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Figure 1: Our approach analyzes a virtual environment and automatically places visual elements (e.g., paintings) at locations
users are expected to pay attention to. Left: an input 3D scene with its corresponding layout. Right: the optimal placement of
visual elements that will attain the target gaze duration. The eyes depict the camera location and angle in taking the screenshots.

ABSTRACT

Eye-tracking enables researchers to conduct complex analysis on
human behavior. With the recent introduction of eye-tracking into
consumer-grade virtual reality headsets, the barrier of entry to visual
attention analysis in virtual environments has been lowered signifi-
cantly. Whether for arranging artwork in a virtual museum, posting
banners for virtual events or placing advertisements in virtual worlds,
analyzing visual attention patterns provides a powerful means for
guiding visual element placement.

In this work, we propose a novel data-driven optimization ap-
proach for automatically analyzing visual attention and placing vi-
sual elements in 3D virtual environments. Using an eye-tracking
virtual reality headset, we collect eye-tracking data which we use
to train a regression model for predicting gaze duration. We then
use the predicted gaze duration output of our regressors to optimize
the placement of visual elements with respect to certain visual at-
tention and design goals. Through experiments in several virtual
environments, we demonstrate the effectiveness of our optimization
approach for predicting gaze duration and for placing visual ele-
ments in different practical scenarios. Our approach is implemented
as a useful plug-in that level designers can use to automatically
populate visual elements in 3D virtual environments.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Virtual Reality;

1 INTRODUCTION

A key challenge of designing a 3D virtual environment for an im-
mersive experience is to predict the users’ visual attention in the
environment throughout their navigation. Such predictions can serve
as a useful guide for placing visual elements—like artworks and
visual hints—to enrich the immersive experience. Moreover, to
sustain the growth of virtual reality content and satisfy the monetary
needs of content providers, advertising in virtual spaces has become
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increasingly common. For example, Google is experimenting with
virtual reality advertising [46]. In this paper, we explore using visual
attention data for guiding the placement of visual elements in virtual
environments, in an attempt to satisfy the aforementioned needs of
content creators and designers.

In most previous visual attention studies, eye-tracking was per-
formed using either mobile cameras or specialty equipment that track
a user’s visual attention on 2D images. However, with the intro-
duction of consumer-grade virtual reality devices with eye-tracking
capabilities—such as the FOVE virtual reality headset—the barrier
of entry to visual attention and behavioral studies in 3D virtual envi-
ronments shrank substantially [13]. In our work, we are interested
in analyzing overt visual attention. The allocation of overt visual
attention is often measured in terms of gaze duration on a given
scene element. Here, gaze duration is defined as the time interval of
viewing an element without shifting one’s gaze [31]. While visual
attention and eye movements are not identical, they are strongly
correlated during natural tasks such as the ones considered here,
making gaze duration a useful indicator of visual attention. In this
work, we make use of the FOVE eye-tracking virtual reality headset
for collecting gaze duration data to devise a data-driven optimization
approach for visual elements placement.

Because placing visual elements is not the crux of level designers’
work, we aim to provide level designers with a method to evaluate
the placement of visual elements in 3D virtual environments. Specif-
ically, we achieve this by training a regression model based on gaze
duration data obtained from an eye-tracking virtual reality headset.
The trained regressor can then be applied to compute the likelihoods
of different locations in a virtual environment to be viewed by users
in a navigation session. An optimization approach is subsequently
run to select a set of locations for placing visual elements such as ad-
vertisements by considering visual attention and other design criteria
encoded as cost functions. Figure 1 depicts an example.
Major Contributions:

• We propose a novel data-driven approach to train a regressor to
estimate the distribution human visual attention in a 3D virtual
environment, based on eye-tracking data obtained from virtual
reality experiments.

• Based on our visual attention regressor, we devise an opti-
mization approach for automatically placing visual elements
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Figure 2: Overview of our approach.
at locations that are expected to receive high visual attention.

• We validate the effectiveness of our approach via a number
of within-user experiments conducted in virtual environments.
We also demonstrate how our novel approach could be em-
ployed to automatically place visual elements in a number of
practical scenarios.

2 RELATED WORK

Our problem formulation was inspired by recent works in optimizing
interior scene layout [33, 48], lighting design [40], label placements
in 3D scenes [18] and predicting gaze fixation [26].

2.1 Visual Attention and Panel Placement
In the domain of human-computer interaction and visualization,
researchers have demonstrated how visual attention patterns may
be used to guide the placement of different visual elements such as
advertisement banners in a website [44], and to guide the generation
of visual content such as film comics [38] –“a kind of art medium
created by editing the frames of a movie into a book in comic style.”.
Our work was inspired by these studies.

Banner Blindness, a term coined by Benway et al. [5] and a heav-
ily studied phenomenon in usability, occurs when website visitors
consciously or subconsciously ignore banner advertisements. Burke
et al. [10] studied banner blindness and its negative effects on vi-
sual memory and perceived cognitive workload. Franconeri and
Simons [16] and Zhang [49] studied various banner animations and
how they interfere with attention. Ignored banners have been proven
to cost content creators substantial amounts of revenue. As virtual
reality content continues to grow, we believe that it is important to
explore this phenomenon in 3D virtual environments as well.

In HeatSpace [15], the authors used depth cameras to track users’
positions and geometrically project their gaze estimated from head
pose in a 3D room. This projected gaze is used to find the best panel
placement by maximizing the likelihood that the panel could be seen
(visibility). While in our approach, we try to maximize the likelihood
that the panel would be seen (viewablity) using eye-tracking data.

The standard way to measure advertisement panel exposure is
to count the number of passers-by [45]. This count is eventually
adjusted according to some factors related to the panel’s visibility.
Factors such as how far the panel is from the road, the panel’s height
and lighting conditions all affect how visible the panel is to its target
audience. We drew inspiration from these factors while defining our
feature set for predicting gaze duration.

2.2 Eye-Tracking and Visual Attention
Eye-tracking is heavily employed to measure visual attention [43].
For example, Li et al. [30] found a relationship between gaze signals
and user interest by using a built-in mobile camera to measure gaze
duration while viewing areas of interest on a multi-column web
page. Lagun and Agichtein [29] studied users’ visual attention via
web search behavioral studies. They validate their findings with
eye-tracking results. Additionally, Ennis et al. [14] evaluated the
distinctiveness and attractiveness of human virtual characters’ gaits
using gaze duration. Similarly, we use gaze duration to measure the
extent of visual attention to visual elements.

Figure 3: Layout of Museum L1.
With the introduction of eye-tracking in virtual reality headsets

like the FOVE, platforms like CognitiveVR provide tools for devel-
opers to simplify behavioral analysis using virtual reality headsets.
Furthermore, companies such as Pupil Labs build eye-tracking de-
vices as well as add-ons for the HTC Vive virtual reality headset that
extend its capabilities to support eye- tracking.

Numerous computational models have been devised for predict-
ing the allocation of attention based on the distribution of visual
features in a scene [7]. Eye-tracking datasets [8, 11] were created to
measure the accuracy of visual attention models [27]. The data was
recorded by a camera-based eye tracker. Unlike our approach which
is trained on gaze data collected from 3D virtual environments, these
datasets and their corresponding models were created to predict
visual attention on 2D images. Conversely, like our approach sev-
eral models [24, 35] have been devised to analyze the allocation of
attention in 3D scenes.

Design optimizations based on visual attention panels were ex-
plored in several previous works. Pang et al. [36] devised a method
to optimize web designs by directing visitor’s visual gaze. Similarly,
Cao et al. [12] optimizes Manga panel placements according to a
desired gaze flow pattern. The aforementioned works optimize place-
ments of elements to satisfy a desired visual attention flow, while
our approach optimizes element placement in a virtual environment
to satisfy a total amount of visual attention (gaze duration).

Hillaire et al. [19] modeled visual attention in a 3D environment.
They used data collected from a gaze tracker of subjects viewing a
flat screen to verify their model’s accuracy. Jensen et al. [22] used
a wearable device to track the subject’s gaze as he/she moved in a
real world 3D space. However, both of these models have not been
utilized to optimize visual attention in 3D spaces.

2.3 Advertisement Placement in Virtual Reality
Several efforts have been made to enhance advertisements in vir-
tual reality. Bates et al. [4] optimized advertisements’ content
based on crowd statistics within a virtual environment. Hyndman
et al. [20] catered advertisements according to the environment’s
context. Kusumoto et al. [28] incentivized players to place adver-
tisements in their own virtual spaces, while Kimsey [25] proposed
the strategy of presenting advertisements concealed as player tasks.
These efforts have provided early insights about enhancing advertise-
ments in 3D virtual environments. However, the proposed methods
rely solely on designer intervention in placing advertisements. Ad-
vertisement locations are selected manually by the level designer
without any metrics to inform how effective the selected locations
could be with regard to attracting visual attention. In contrast, we
aim to automate and facilitate visual element placement for level
designers by using a quantitative data-driven approach.

3 OVERVIEW

Figure 2 shows an overview of our approach. Our visual attention
regressor is trained with eye-tracking data obtained from users who
navigated in virtual environments during our data collection sessions
(Section 4). Essentially, the regressor learns the relationship between
the features characterizing locations in a 3D virtual environment and
the visual attention received by elements placed at those locations



Subway L1 & L2
Mission Task Start
1 Find North Station Platform 1
2 Find Boston College Platform 2
3, 4 Find the Boston University exit Platform 1, 2
5, 6 Find the Fenway Park exit Platform 1, 2
7, 8 Find the bus stop exit Platform 1, 2

Museum L1 & L2
Mission Task Start
9, 10 View paintings in 3 minutes; take a quiz Stairs,

elevators,
or escalators

Table 1: The 10 missions displayed to participants during data
collection. Section 4 discusses details of the mission formats.
(Section 5). Given a new virtual environment as input, the trained
regressor can then be applied to automatically predict the amount of
visual attention (in terms of gaze duration) that will be received. An
optimization approach is run to automatically place visual elements
(e.g., pictures) in the 3D environment to match their combined
expected visual attention with a specified target (Section 6).

To facilitate our discussion, we use a scene called Museum L1,
which mimics a level of the Museum of Modern Art in New York,
as our running example to illustrate most parts of our approach.
Figures 1 and 3 show its screenshots and layout.

We implemented our approach using Python and C#. We created a
plug-in for the Unity 5 game engine, which level designers can use to
automatically populate a virtual environment with visual elements.

4 DATA COLLECTION EXPERIMENT

We will describe the participants, apparatus, tasks and scenes utilized
for our data collection experiment.
Participants. To collect the gaze duration data, we recruited 23 par-
ticipants to complete our experiments. The participants were mostly
students and university staff whose ages ranged from 19 to 30 years
old. Each participant was asked to navigate the environment with
a certain mission in mind (e.g., go from here to there). The whole
navigation session was recorded which included the participant’s
position and gaze. The experiment was approved by the Institutional
Review Board (IRB) of the university.
Apparatus. To navigate in the environment, each participant
wore a FOVE virtual reality headset which gave us the ability to
track his/her head orientation and gaze. The FOVE had a built-in
infrared eye-tracking system that operates with a frame rate of 120
fps. An Internal Measurement Unit (IMU) was used to track the
head orientation and an infrared sensor was used to track the user’s
gaze. It displayed visuals at a frame rate of 70 fps. It has a tracking
accuracy of less than one degree, significantly smaller than the
dimensions of our visual elements. The FOVE was calibrated at the
beginning of the experiment and each time the participant removed
the headset. Additionally, the user controlled his/her locomotion
using a game controller akin to [37] and [47].
Scenes. We created 3D virtual environments and placed visual
elements at different locations within them. These scenes were
realistic and created by referencing real-world architectural layouts
like the Kenmore subway station in Boston and the Museum of
Modern Art (MOMA) in New York shown in Figure 10. Using
these environments, we defined four scenes comprising Subway L1,
Subway L2, Museum L1, and Museum L2. The two-floored Subway
scenes were taken from two different placements of visual elements
in the subway station. Museum L1 and L2 were based on two levels
of the museum. Candidate locations where visual elements (e.g.,
advertisements for Subway, artworks for Museum) would be placed
were preliminary determined; the first and second Subway scenes
contained 24 and 54 visual elements respectively, while Museum
L1 and L2 contained 41 and 38. The supplementary material shows

(a) Mission Screen (b) FOVE VR Headset
Figure 4: Participants of our data collection experiment completed
missions while wearing the eye-tracking VR headset. Their positions
and gaze were recorded and later used to train our visual attention
regressor. The red dot shows this participant’s gaze point.

some examples of visual elements shown to participants during the
data collection experiment.

During the data collection experiments, participants were asked
to complete missions in these two floored scenes. In Museum L1
and L2, participants were moved from one floor to the other after
the mission was complete. In the Subway scenes, participants could
willingly move from one floor to the other using the stairs, elevators
or escalators, as shown in the supplementary material.
Missions. Each participant was asked to navigate the environment
with a certain mission in mind (e.g., view paintings within a specific
amount of time for the museum scenes, or find a specific exit for the
subway scenes). The whole navigation session was recorded which
included the participant’s position and gaze.

We designed a total of 10 missions that replicate realistic naviga-
tion scenarios. Table 1 shows the two categories of missions.

• Subway L1 & L2: we cycled through the 8 missions shown in
Table 1, giving each participant two consecutive missions from
the two subway station scenes.

• Museum L1 & L2: we created missions 9 and 10 for Museum
L1 and Museum L2 respectively. We asked all participants to
complete missions 9 and 10. We requested that they looked
around and informed them that they would be quizzed on
which images they saw in the museum. The task was stopped
after 3 minutes.

To ensure that our missions produce realistic paths, the participant
was initially dropped at an entry location like the stairs, elevators
or escalators in the Museum L1 & L2 example; or in a random
location from a pool of predefined locations on one of the platforms
of Subway L1 to simulate exiting a train. We assigned each mission
the starting platform that would ensure participants will traverse the
longest distance possible.

For Museum L1 (Figure 3 shows its layout), each participant was
asked to navigate the museum level like visiting an art gallery in the
real world. In this case, the visual elements refer to paintings. This
task was limited to 3 minutes and participants were incentivized to
notice artwork in their navigation by informing them that they will
take a short quiz about the artwork after sessions. In reality, no quiz
assignments were given to the participants after the experiment as
we only needed to and had already collected their eye gaze data for
training our regressors.

As for Subway L1 & L2, assuming the participant started out with
mission 1, he/she would be dropped on Platform 1 and asked to find
his/her way to North Station. After completing the task, the partici-
pant would enter the second Subway scene (has the same layout as
the previous, with a different arrangement of advertisements) and
would be given mission 2. The participant would enter the station on
Platform 2 and would be tasked to find the way to Boston College.

We displayed the missions for participants through a FOVE virtual
reality headset (Figure 4). The participants completed the missions
by navigating through the scene using an Xbox game controller as
we tracked their eye-movements using the headset. It took each



participant on average 11 minutes and 13 seconds to complete the
entire experiment.

5 TRAINING OF VISUAL ATTENTION REGRESSOR

Based on the eye gaze data collected from users navigating the
virtual environments, we train a visual attention regressor to predict
the duration of eye gaze received by a visual element placed at a
certain location in a 3D virtual environment. We discuss the training
of our regressor in this section.

5.1 Data
We measured the gaze duration of each visual element received from
participants while navigating our scenes. A visual element could
receive several gaze durations from a participant, as he/she could
view them multiple times while completing the mission. In this
case, the element was recorded multiple times (with different gaze
durations) in our dataset. In other words, visual elements can be
visited more than once. Elements not viewed by the participant were
assigned a gaze duration of zero.

5.2 Training and Prediction
We use the gaze duration of each visual element obtained in our data
collection session as the target of our regression model. In a nutshell,
each data sample in our dataset refers to an element, represented as
an 12-feature vector as defined in the following section with a gaze
duration measured from every user.

We experimented with different regressors (e.g., Decision Trees,
Random Forests, Support Vector Machines) for learning the rela-
tionship between the environment features and the amount of visual
attention. Because the Random Forest regressor gave us the lowest
error empirically, we chose to use it in our optimization. We provide
more details of the training results in Section 7.1.

Given a new 3D scene with the candidate locations for placing a
visual element, our trained regressor predicts the gaze duration of
placing the element at each location. This predicted gaze duration is
used for optimizing the placement of visual elements.

5.3 Features
For each visual element placed in the environment, we extract a
number of features that we use to train our regressor. These fea-
tures were designed as per a consultation interview with 5 experts—
museum curators and interior designers—and referencing spatial
design books [6, 34]. Our features allow a visual element placed at
a certain location to be assigned a predicted gaze duration by the
regressor. We describe the features we use as follows:

• Element’s Dimension: The element’s rectangular width and
length each as a separate feature. In general, larger elements
receive more attention than smaller elements. It could be aes-
thetically pleasing to display varying sizes of visual elements.
Hence, we provide the designer the flexibility of combining
multiple sizes of visual elements.

• Element’s Height From Ground: The distance between the
ground and the element’s centroid, i.e., how high the element
is placed on the wall. Experts follow specific guidelines per-
taining to element visual accessibility [32]. As we can adjust
the player’s height in virtual reality, we can ignore the visible
accessibility aspect of the element’s height and just focus on
the visual attention it receives.

• Locations Relative to Places of Interest: We measure the min-
imum distance between the element and entrances/exits; the
element and stairs; the element and escalators; and the ele-
ment and elevators. This gives us four feature values with the
entrances and exits assumed to be equivalent. Much like the
element height feature we ignore accessibility (e.g., blocking
emergency exits) and focus on visual attention.

• Location Relative to Room Center: The location of the ele-
ment’s centroid relative to the room center as the origin. Visual
elements that are placed in spacious locations generally receive
more visual attention than others. Because it is computation-
ally expensive to measure the amount of empty space in front
of large numbers of elements placed in sizable virtual spaces,
we use this feature—along with the occlusion metric—as an
approximation.

• Occlusion Metric: We uniformly project 100 rays from the
element’s centroid onto a hemisphere with a 5-meter radius,
and count the number of collisions due to occlusions. This
feature gives us an indicator on how well the element can be
viewed from different angles.

• Lighting Metrics: We measure the effect of environment light-
ing on visual elements. First, we determine the minimum
distance between our element and light sources (point or spot
lights with constant intensity and range) placed in the environ-
ment. To find the distance to each light source, we cast a ray
from the visual element to each light source. We ignore any
light source that is occluded by another object as it has little
influence on the element’s illumination. We use the distance
to the nearest light source as the first lighting metric. In addi-
tion, we record the number of unblocked light sources that are
within 15 meters of the visual element as the second lighting
metric. The first and second metrics are included as two sepa-
rate features. Experts use lighting to highlight pieces that they
wish to receive attention. Therefore, we give the designer the
flexibility of defining their lighting locations.

• Distance from Nearest Path: We specify a set of paths (shown
in the supplementary material) that users are likely to traverse
and calculate the distance from the closest path as a feature
value. It is common practice for experts to blueprint visitor-
flow [42] prior to determining placement of elements. These
visitor-flow paths reflect the experts’ estimation of how the
space should be traversed by visitors. In designing visitor-flow,
experts may consider heavy traffic when they are concerned
with the safety, security and accessibility of the environment
(e.g., blocking emergency exits). However, they do not con-
sider crowds in blueprinting visitor-flow. Therefore we assume
that our virtual environments are not populated by crowds.

6 OPTIMIZING VISUAL ELEMENTS PLACEMENT

Given the trained visual attention regressor, we devise an optimiza-
tion framework for automatically placing visual elements in a 3D
virtual environment.

6.1 Cost Function
Suppose the virtual environment has a set L = {li} of candidate
locations (e.g., panels) for placing visual elements. The candidate
locations were selected using a procedural layout technique akin
to [48] and manually refined by the designer. Using the trained
visual attention regressor, we can predict the gaze duration T (li)
that a visual element placed at location li receives. For formulation
simplicity, we assume that the visual element takes up the dimension
of the panel and is centered at the selected location.
Total Cost Function. Let LS = {li} be a placement solution, where
each li refers to a selected location for placing a visual element
and LS ⊂ L. We define the total cost function for evaluating the
placement solution as:

CTotal(LS) = wGCG(LS)+wRCR(LS)+wPCP(LS), (1)

where CG is a goal-specific cost, CR is a regularization cost and CP
is a prior cost; and wG, wR and wP are their respective weights. We
describe details of the cost terms in the following.
Goal-Specific Cost. The goal-specific cost is defined to encode the
major goal that the designer wants the visual elements placement



Figure 5: Edges connecting all the selected locations found by a
nearest neighbor search starting from the leftmost location.
to achieve. One common goal is that the visual elements should
altogether attract a target gaze duration:

CG(LS) =
1
T ′
|∑

li

T (li)−T ′|, (2)

where T (li) returns the gaze duration predicted by the trained regres-
sor for a visual element placed at location li; T ′ is the target gaze
duration. Note that the goal-specific cost could be redefined to fit
with the designer’s goal if necessary. We show some examples in
our experiments in Section 8.
Regularization Cost. Generally the designer may prefer the se-
lected visual elements locations to be distributed evenly in the scene.
We define a regularization cost to allow such consideration:

CR(LS) =
1
|E|D ∑

ei∈E
(ei− ē)2, (3)

where E = {ei} is a set of edges that form a path going through
each of the selected locations li ∈ LS; ē is the average length of
the edges in E; D is the normalization constant and is set as the
squared diagonal of the bounding rectangle of the environment’s
floor plan. The path is found by a nearest neighbor search which
approximates the shortest path for the traveling salesman problem
by always choosing the nearest unvisited node (i.e., nearest location
in our case) as the next move. We set the search to start from the
leftmost selected location, and an extra edge is added to connect
the last visited location to the starting location. See Figure 5 for an
illustration.
Prior Cost. We also define a prior cost for constraining the number
of visual elements used:

CP(LS) = exp(− 1
2σ2 (|LS|−n)2), (4)

where n is the prior number of visual elements used and σ , which
controls the spread of the Gaussian penalty function, is empirically
set as 1.0.

6.2 Optimization
To extensively explore the solution space, we solve the optimization
by using a Markov chain Monte Carlo technique, namely, simulated
annealing with Metropolis-Hastings state searching steps. As a
variable number of locations LS can be selected from the set of
all possible locations L, the optimization needs to be performed
in a trans-dimensional solution space. To this end, we apply the
reversible-jump Markov chain Monte Carlo technique [17], which
can handle changing dimensionality. First, we define a Boltzmann-
like objective function:

f (LS) = exp(−1
t

CTotal(LS)), (5)

where t is the temperature parameter for simulated annealing. The
optimization proceeds iteratively. At each iteration, a move is pro-
posed to alter the current placement solution LS to a proposed place-
ment solution L′S. There are three types of moves:

Figure 6: An optimization result of Museum L1 with the target gaze
duration set as 30,000 ms. The colors correspond to the gaze dura-
tion predicted by the regressor. The selected locations for placing
visual elements, whose predicted gaze duration sums to 29,941 ms,
are enclosed.

• Add: a random location li ∈ L− LS is added to the set of
selected locations LS, such that L′S = LS∪{li};

• Remove: a random location li ∈ LS is removed from the set of
selected locations LS, such that L′S = LS−{li};

• Modify: a random location li ∈ LS is removed, and a random
location l j ∈ L−LS is added to the set of selected locations
LS, such that L′S = (LS−{li})∪{l j} and li 6= l j.

The Add, Remove and Modify moves are respectively selected
with probabilities pa, pr and pm. In our implementation, we set pa =
0.4, pr = 0.2 and pm = 0.4 to slightly favor adding and modifying
locations.

The total cost CTotal(L′S) of the proposed placement solution L′S
is compared with the total cost CTotal(LS) of the current placement
solution LS. The proposed solution L′S is accepted with the following
acceptance probability α(L′S|LS) set according to the Metropolis
criterion to maintain the detailed balance condition:

For an Add move,

α(L′S|LS) = min
(

1,
pr

pa

|L−LS|
|L′S|

f (L′S)
f (LS)

)
, (6)

For a Remove move,

α(L′S|LS) = min
(

1,
pa

pr

|LS|
|L−L′S|

f (L′S)
f (LS)

)
, (7)

For a Modify move,

α(L′S|LS) = min
(

1,
f (L′S)
f (LS)

)
, (8)

By default, we set the temperature t as 1.0 at the beginning of
the optimization, which decreases by 0.2% every iteration until it
reaches a small value of 0.005 after which it remains the same.
Essentially, this allows the optimizer to explore the solution space
aggressively at the beginning, while refining the solution in a more
greedy fashion in the later stage. The optimization terminates when
the absolute change in total cost is less than 5% over 50 iterations.
We set the weights as wG = 1.0, wR = 0.1 and wP = 0.1 in our
optimization unless specified otherwise. In practice these weights
can be controlled by the designer to emphasize different cost terms
based on design needs. Figure 6 shows an optimization result of
Museum L1 and Figure 7 shows a plot of the change in total cost
during a run of the optimization. We show optimization results for
additional scenes in Section 8.

For the running example (Museum L1), it takes on average 180
iterations to finish the optimization with a target gaze duration of
30 seconds. The optimization takes about 0.2 seconds to finish
using our current implementation with a workstation equipped with
3.6GHz Intel Core i7 processor and 16GB of RAM.



Figure 7: Change in cost over an optimization run of Museum L1.
RMSE(%) RMSE(ms)

Support Vector Regressor 7.54 2,002
Decision Tree 6.77 1,797
Random Forest 6.70 1,780

Table 2: Prediction error of our test set of 762 examples using
different types of regressors. The ms error was computed by scaling
up the [0,1] output of our regressors by the maximum value (2,655
ms)
7 REGRESSOR RESULTS

We discuss the results of training our visual attention regressor. An
analysis of our regressor’s performance is provided in the supple-
mentary material.

7.1 Training Results
At each participant’s session, a visual element was assigned a gaze
duration record for each uninterrupted viewing period. This may
result in multiple gaze durations for each visual element, all of which
are included in our dataset. Any visual element not viewed during a
session was assigned a zero gaze duration. The above assignments
resulted in a total of 3,045 data samples.

Prior to training our regressors we performed L2-normalization
on our dataset. We then randomly sampled a 762 test set (about 25%
of the entire dataset) prior to training our regressor. The remaining
samples were used for training. We trained the regressors with
scene-specific data samples but did not achieve a lower RMSE.

We experimented with training different types of regressors. For
support vector machine, we use an Epsilon-Support Vector Regressor
(ε-SVR) [39] with an ε of 0.01 and an error term penalty parameter
C of 1,000. For decision tree, we set the maximum depth to 5. For
random forest [9], we set the maximum depth to 5 for all 5 trees in
the forest. We used these hyper-parameters as they produced the
highest accuracy using grid-search with 10-fold cross-validation.

In a 10-fold cross-validation done on the 3,045 sample training
set, we obtained a root mean squared error of 2,226 ms, 2,026
ms and 2,003 ms for the support vector machine, decision tree
and random forest respectively. Table 2 shows that the random
forest regressor attains the smallest root mean square error on our
isolated randomly sampled test set. We chose to use the random
forest regressor in our optimization because it attained the lowest
prediction error as well as the highest correlation coefficient (0.64).

We tried training regressors per scene, but did not attain a lower
RMSE. This and other results comparing the ground-truth gaze
duration with the predicted gaze duration for Museum L1, Museum
L2 and Subway L1 & L2, are provided in the supplementary material.

8 OPTIMIZATION RESULTS

Our optimization framework for choosing visual element locations
provides ample flexibility for the designer to generate solutions that
fit with different goals or constraints. We demonstrate its use to
tackle some practical scenarios.
Target Duration of Visual Attention. Our approach allows the
designer to specify an accumulated target gaze duration T ′ that
he/she wants our optimizer to achieve by automatically selecting

(a) Target: 30,000 ms (b) Target: 20,000 ms

Figure 8: The location preference experiments in Museum L1.

(a) n = 8 (b) n = 12

Figure 9: Using different prior numbers of visual elements n in
Museum L1.
a set of visual elements whose predicted gaze duration meets the
target. This functionality could be useful for advertisers who want
to place advertisements in a shopping mall or a subway station to
attract a certain amount of visual attention for marketing purposes.
Figure 11 shows optimization results on three different scenes (re-
fer to Figure 10 for their 3D views), each with a different target
accumulated gaze duration. Please refer to the figure captions for
the experiment settings and results. In all four examples, the target
total gaze durations are successfully met by the selected set of visual
elements, with an error of about 0.1 second or less.
Varying Number of Visual Elements. Our approach also allows
the designer to specify a prior number of visual elements n to be
used in the placement solution, which is encoded as a soft constraint
by Equation 4. This functionality could find practical applications.
For example, in a virtual subway station, an advertiser may choose
to place a lot of advertisements at various locations, or a small
set of advertisements at a few eye-catching locations, to attain a
certain target total duration of visual attention. Our approach allows
choosing either strategy by changing n. Two optimization results
generated with different prior numbers of visual elements in Museum
L1 are shown in Figure 9. Both results were optimized with the total
target gaze duration set as 15,000 ms. The total predicted gaze
duration of the 8 selected visual elements in (a) is 14,957 ms, while
that of the 12 selected visual elements in (b) is 15,030 ms, both
close to the total target duration of 15,000 ms.
Location Preference. In some scenarios, the designer may want
the solution to include visual elements placed at certain locations.
For example, an advertiser may want at least one advertisement
to be placed near the entrance of a subway station regardless of
where the rest of the advertisements are placed. Our approach can
easily achieve this feature by hard constraints: the visual element
locations that must be included are added to the initial solution
set; these visual element locations are kept unchanged (i.e., not
modified by any moves) while the optimizer modifies the rest of
the visual element locations. Figure 8 shows two examples. In
each example, three visual element locations (blue) are fixed by
the designer, and the optimizer is asked to choose the rest of the
visual element locations (purple) to attain the target accumulated
gaze duration (30,000 ms and 20,000 ms). The total predicted gaze
durations of the selected locations are 29,992 ms and 20,026 ms
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Figure 10: 3D views of the input scenes.
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(a) Floor Plan (Input) (b) Floor Plan (Result) (c) 3D View (Result)

Figure 11: Selecting visual elements to attain a total gaze duration target. (a) Input scenes with no visual elements placed. (b) Candidate
locations that the optimization will consider while placing visual elements—red indicates high predicted gaze duration while dark indicates
low predicted gaze duration. The selected locations by the optimizer are enclosed. The target accumulated gaze duration for Museum L2,
Subway L1 and Subway L2 are set as 25,000 ms, 5,000 ms, and 9,000 ms, while the total predicted gaze durations of the locations selected by
the optimizer are 25,117 ms, 4,987 ms, and 9,011 ms respectively, which are close to the targets. (c) 3D views of the scenes with the visual
elements placed according to the optimization results. The screenshots in (c) are captured from the cameras in (b).



(a) Black (15,098 ms),
Purple (14,982 ms)

(b) Black (21,055 ms),
Purple (9,005 ms)

Figure 12: Concurrently selecting two groups of visual elements
with two target gaze durations within a single optimization in Mu-
seum L1.
respectively in (a) and (b), which are close to the targets.
Groups of Visual Elements. Our approach can also deal with the
scenario where several groups of visual elements (e.g., from several
companies) need to be placed in the same space. To achieve this,
the designer specifies the target total gaze duration that should be
received by each group. Our formulation can be easily extended
to handle the scenario by including multiple targets in Equation 2
instead of one target. Figure 12 shows two examples based on
Museum L1. In (a), the optimizer is asked to select two visual
element groups with each group receiving roughly the same amount
of visual attention (15,000 ms and 15,000 ms). It selected visual
elements (black) whose predicted gaze duration sums to 15,098 ms
and another group (purple) whose predicted gaze duration sums to
14,982 ms. In (b), the optimizer is asked to select two groups with
each group receiving a different amount of visual attention. The
targets are set as 21,000 ms and 9,000 ms. The optimizer selects
a group (black) whose predicted gaze duration sums to 21,055 ms
and another group (purple) whose predicted gaze duration sums to
9,005 ms.

9 DISCUSSION

Limitations. Although using eye-tracking VR headsets for visual
attention experiments seems like a promising endeavor, it is still
a long way from completely replacing specialty eye-trackers. The
FOVE headset still has room for improvement in terms of precision;
currently it has too high of a latency to be utilized in elaborate
behavioral studies. Moreover, virtual reality headsets are more
restrictive and less comfortable than specialty eye-trackers, and some
cannot be worn with glasses. These factors could skew experiment
results, especially ones that require a high level of detail. Our
experiments were conducted for a relatively short time due to these
reasons.

There is room for improvement on our feature set as well. For
example, our lighting feature could be improved to include light in-
tensity, shading and reflection to account for the element’s visibility.
Similarly, we have not integrated complex features like textures into
our model. The distance from the nearest path metric captures the
relation between the participants’ paths and the element’s visibility.
We specified these paths based on our knowledge of the predefined
tasks and desired visitor-flow. In practice, these paths might be esti-
mated based on visitor navigation statistics recorded from the real
world [1, 42] or determined by experienced wayfinding designers.

We collected data from only four scenes and 23 subjects. Col-
lecting data from more scenes will expand our approach’s ability to
generalize. Moreover, we tested our approach on scenes built manu-
ally based on floor plans. Provided with more detailed architectural
layouts, or by scanning and reconstructing 3D scenes from the real
world, we will be able to test our approach in a more realistic setting
and validate its ability for placing visual elements effectively in
real-world scenes. Furthermore, in validating our regressor we held
out random data samples. With more subjects, samples can be held

out per subject to determine how well the regressor can generalize
across participants it has not encountered.
Future Work. With simple regressors and a reasonably-sized
dataset, we were able to achieve a relatively low RMSE. The physical
set-up of our data collection sessions posed challenges for us to
collect gaze data from a lot of users. In future work, with more
widespread support of WebVR and availability of eye-tracking VR
headsets, we could possibly scale up the virtual reality-based eye-
tracking experiments via crowdsourcing. While we demonstrate the
idea of using eye-tracking data to optimize visual element placement
in virtual environments through our framework, with a large-scale
eye gaze dataset, utilizing a deep neural network could improve our
framework’s performance.

While our simple features identified through interviews are com-
monly utilized by curators and spacial designers in deciding visual
element placements, we could extend our optimization-based design
framework by incorporating other perceptual factors and functional-
ities that may be important in the real-world spacial design process.
With such extension, our framework might be able to facilitate the
design of real-world architectural spaces. For example, an architect
could be presented with the visual elements’ placement suggestions
that could yield the highest financial gain before making any physical
changes to or even constructing an architectural space.

Moreover, art curators often utilize salon-style (grid-like) hanging
of artwork. This style of hanging artwork creates competition among
artists and the curator must decide which artist will receive the best
“eye level” or “on the line” location for their paintings [3]. With
some modifications to our feature set we could provide curators
with a tool to automatically optimize element placement according
to exhibition accessibility design guidelines [32]. Our approach
could provide curators with a way to evaluate painting placements
quantitatively. Similarly, marketing firms could use our model to
generate effective advertisement placements for their campaigns.

Another avenue for future work is to use memorability [21], im-
portance [41] or visual saliency [23] of the visual element’s content
as additional features for predicting visual attention, which could
enhance our framework’s applicability.

We designed our method to predict and optimize 2D visual ele-
ments like paintings or advertisements in a 3D virtual environment
void of any stimuli (e.g. crowds, traffic, visual aids). Some visual
stimuli [2] were shown to decrease the overall gaze points the scene
receives. More experiments need to be done to determine if this
phenomenon extends to visual elements placed in the scene. We
have not considered 3D visual elements like statues in our imple-
mentation. While we implemented our approach to optimize the
placement of static objects, in future work it would be interesting to
extend our approach to consider moving elements as well.

10 SUMMARY

In this work, we captured users’ gaze data via an eye-tracking VR
headsets. We used the collected eye gaze data to train a visual
attention regressor which is capable of predicting gaze duration for
candidate locations based on features such as height from the floor,
occlusion, lighting and distance from navigation paths.

Based on the regressor, we devised a novel data-driven optimiza-
tion approach for automatically placing visual elements in a virtual
environment by considering a number of design criteria. Experi-
ments showed that the regressor can reasonably predict gaze duration
towards elements placed at various locations, and that our approach
can be used for effectively placing elements for various practical
scenarios.
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